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ABSTRACT

In this paper a non-equilibrium statistical-mechanical theory of dielectric relaxation is devel-
oped. This approach differs from previous world in that a generalized nonlocal evolution equa-
tion for the polarization is constructed. General equations of motion are presented for the po-
larization, internal energy, and entropy which include effects of memory. These equations can
be expressed in ferms of reduced-cotrelation functions, and are valid for non-equilibrium and
arbitrary field strengths, Expressions for an effective local field also are developed. The Four-
ier transform of the evolution equation yields a general compact expression for the Fourier
transform of the memory function and a specific form for the susceptibility. The kernel, Four-
ier transform of the memory function are developed, and relaxation-time functions for special
cases. In the limit of a single relaxation time, a Debye response is obtained. In the subsequent
special cases exponential and Gaussian forms for the memory functions are assumed. The final
special case relates a power-law circuit transfer function to the theory of Dissado and Hill. In
this case the memory kernel and relaxation times are derived from the Dissado-Hill response
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function,

1 INTRODUCTION

N this paper, I present a theory of dielectric relaxation using non-
quuilibl‘ium stalistical mechanics. The statistical-mechanical founda-
tions are addressed in terms of generalized correlation functions, The
specific phenomenclogy of yelaxation involves the estimation of cot-
relation functions. The approach is based on a previously developed
projection-operator formalism [1, 2], This projection-operator approach
to dielectric relaxation has several advantages [3-9]. This method yields
an exact nonlocal polarizafion evolution equation witheut making the
lincar approximation, as is made in Kubo's dynamical-driving formal-
ism. In addition, the equation can describe non-equilibrium behavior
[10,11]. In this paper a number of examples of correlation functions are
considered,

Section 2 (see the Table 1 of symbols) beging with a overview of the
general properties of dieleciric relaxation in solids and liquids. I then
develop the undexlying statistical-mechanical theory and a novel po-
larization evolution equation. I use the results to study polarization
response and develop approximations for the relaxation kernel and the
Fourier transform of the memory function.

2 DIELECTRIC RELAXATION
2.1 RELAXATION

In this overview Scction, the theory of dielectric relaxation is de-
scribed. lo this end I overview the microscopic origins of dielectric

response as well as previously developed models. In chiral materials
it has been found that application of magnetic ficlds also can produce
dielectric polarization. In this paper T do not consider magnetic field
interactions.

When an eleclric field is applied to a material, the atoms, molecules,
and defects all readjust in position. The readjustment of molecules in
response to an clectric field is called ‘diclectric relaxation’. Relaxation
behawior depends on lattice properties, frequency, and temperature.

The response of materials to applied ficlds depends strongly on lat-
tice structure, The lattice order or disorder, the presence of permanent
dipoles, temperature, and defects ali contribute to dielectric response.
Relaxation can be a result of dipolar rotation, lattice-phonon interac-
tions in ionic solids and crystals, defect diffusion, higher multipole in-
feractions, or motion of free charge. Hopping-charge, phonon assisted
tunneling transport and accompanying low-frequency percolation be-
havior play a role in charge transfer relaxation [12]. In hopping conduc-
tion, percolation dominates at low frequencies and pair approximation
at high frequencies. It is generally believed that dipoles reorjent in
an applicd field in discrete jumps accompanied by the movement of
charge or defects in the lattice. This cccurs as the molecule makes tran-
sitions from one potential well to another. Since relaxation is due to
transitions between internal energy-density states, a material does not
respond instantancously to an applied ficld. Transitions between states
proceed probabilistically and a finite time is required for the occurrence
of events. If the applied ficld is static then the system will eveniually
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Table 1. List of Symbols

Symbhol Description Unit | Symbol | Description Unit
A | constant — ay, | induced potential energy J
A |polarizability tensor B/m || was, [dipale potential energy ]
¢ | lumped capacitance E ;| dipolav potential energy ]
G |lumped eonductance 5 S [entropy, Lqu.(36) J/K
£ | displacement vector C/m? 14y |internal encryy, Equ.(26) ]
& |applied electric field Vim 7 finternal energy density, Bqud28) [T
f4.  [local electric field V/m v volume wt?
£ |effective electric field V/m % | partition function, lqu.(32) —
£ | Tower teansformed field Vi ~ | polarizability I/m
n | phase space lunctions -- | Tagrangian multiplier I
4 pulse response function F/m-s x |susceptibility I/m
+ kinelic energy ] xo | freespace suseeptibility Fim
A | eurrent density Afm? & | permittivity I/m
F{HC} | memory reponse function B eq  |freespace peunittivity F/m
K. [memory kemnel 5t e, |static permittivity T/m
1 Jresponse-decay function F/ms|| e. [optical permitivity Iifm
iho | dipele moment Can 1* | phase space -
£ Boltzmann’s constant 17k 'y | Gamma function —
{, | depolarization tensor m/ [ ;| momentum ke-m/s
M; |mass kg w  |radial frequency s!
¢ |charge C w,, | reference radial frequency g1
# | dipole moment density, liqu.(15) C/m? p | statistical densily operator, Fqu.(97) | —
@ |effective dipole moment density |C/m? || @ | response function —
B |polarization , Lqu.(27) C/m? || oo |deconductivity F/m-s
#% | phase space point m a | density operator, Equ.(31} —
7 |field point m 7. [relaxation time 5
A temperature K 2y | relaxation lime i 5
1y |dipole tensor m? ji | permanent moment C-m
o |lattice petential energy ] V| potential energy |

come to equilibrium. If the applied field is time dependent then the
material will continuously relax in the applied field, but with a time
lag.

There are many models for dielectric relaxation, These approaches
can be categorized into theories based on harmonic oscillators, distribu-
lion of relaxation times and probabilistic models, Langevin equations,
and models based en Liouville's equation, The formulation used in this
paper falls in the latter category. The models can be divided roughly
into those that include & temperature dependence from statistical me-
chanical reasoning, and models that neglect temperature dependence
or introduce it in an ad-hoc manner  Langevin-based models such
as Debye’s theory include temperature dependence from statistical-
mechanical theory. Many of the probabilistic models do not include
temperature from first principles.

In the distribution of a relaxation time model, Debye relaxations
ate weighted by a probability-density function. This approach is of-
ten ariticized since it is not always possible to interpret the distribution
function [13). However, the distribution of relaxation times approach
is sufficientty general that most dielectric response phenomena can be
described by the madel. The question is whether the model lends itself
to physical interpretation. Since the distribution of the relaxation times
model is a generalization of the Debye response, the physical interpre-
tation is not clear. This is becanse the permittivity for dipolar systems
generally does not exhibit a single-pole Debye response, but rather a
power-law dependence. The origin of this difference can be attributed
to many-body interactions. The distribution of relaxation times model,
in the end, is just an alternative causal mathematical representation of

Table 2, Tist of Mathematical Notations

S;il;.‘thol Dcscn'pticm_ Lquation
M| conlfluent hypergeometric function | iy
£ |Liouville opervater
17| projection aperator
247 | hypergeomelric [unction
214 | hypergeometric funclion
B dm fdi 5]
-i:r. i (34)
contraction of tensors (44)
| lourier Lransform (7
{417y feorrelation function {103}
{7y, |expectation at time t {98)
i Vo |
7 |evolution operator (105)
' | integration over phase space (29)
&  |unit step function
5 idelta function

the permittivity and does not introduce new information.

Dielectric loss in polar materials primarily is duc Lo friction caused
by rotation of mduced and permanent dipoles. T.osses in nonpolar ma-
terials originate mainly from the interaction of induced dipoles, intrin-
sic photon-phonon interaction with the electromagnetic field, and ex-
trinsic loss mechanisms caused by defects, dislocations, and grain struc-
ture. Loss in high-purity crystals is primarily intrinsic. A crystal vi-
brates harmenicalty in the absence of an applied electric field; however,
inharmonic coupling to the eleciric field modifies this behavior. The in-
harmonic interaction allows photon-phonon interaction and thereby in-
troduces loss {14]. It has been found that high-purity centrosymmetric
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dielectric erystals, fe. crystals with reflection symmetry, such as erys-
talline sapphire, strontium titanate or quartz, generally have lower loss
than crystals with non-centrosymumetry [15].

Reasons (or the widespread use of the Debye equation as a paradigm
in dieleclric relaxation theory is that it is simple, it models idealized
relaxation, and it yields predictions on the temperature dependence of
the relaxation time, if the temperature dependence of the viscosity and
density are known. The depolarization current for many disordered
solids is non-exponential and at short times salisfics a power law of the
form [13, 18]

HEE A (0
and satisfies a power law at long times of the form
I(f) _— (1 1ne) (2)

where 0 <, o < 1. In this analysis, short times correspond to
the high microwave tegion of the frequency spectrum and long limes
refer to frequencies <10 kHz. At very small times the current must
depart from {1) to satisfy theoretical constraints. There are exceptions
to the behavior given in Equations (1) and (2), for example, in dipolar
glasses and polycrystalline materials [17]. The susceptibility of many
disordered solids typically behaves at high frequencies as
X' {w) e X" (w) o ™! {3

This implics that x” /x" is independent of frequency. At low frequen-
cies [13]

(0 = X (wh o} (w) o ™ )
This behavior implies that x' /{0 — %) is a constant. On the other
hand, the Debye model predicts a susceptibility loss tangent that in-
creages linearly with frequency. Debye theory also predicts tand —
¢ /&' to vary in proportion to w at low frequencics, which is observed
in some dipolar materials and Jow-loss ceramics at radio frequencics
[18], and as 1 /w at high [requencies.

Any theory of relaxation has to model the local ficld adequately. In
a dielectric, the local and applicd fields are not identical since charge
screening produces an electric depolarization field. Many models of
polar and nenpolar materials have been developed over the years which
use different approximations to the local field. The Clausius-Mosotti
equation was developed for noninteracting, nonpolar molecules using
the Lorentz model of the internal field. This equation works well for
nonpolar gases and liquids. Debye introduced a generalization of the
Clausius-Mosotti equation for the case of polar molecules. Onsager
developed an extension of Debye’s theary by including the reaction
ficld and a more comprehensive local field expression [19], The Onsager
equation i3 often used to caleulate dipole moments in gases.

The Debye model of relaxation assumes that dipoles relax individ-
ually with no interaction with the local envivonment and neglects ef-
focts of nertia. This type of relaxation is an idealization and is varely
obscrved in nature. The simple harmonic oscillator equation for the
polarization P can illustrate single-pole relaxation

d*p dap | - oy~

S y— 1 P = 2 5
di? v ot T T ( ) ( )
R N e

inertial  damping  estoring duiving

where the femperature-dependent relaxation time is 7 == v {r®3p/ET",
with viscosity v, molccular dipole moment 73, and mean-square malec-
ular radius {r*); e and «y are constants, Debye relaxation is obtained
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from this equation by neglecting the first term which is related to in-
ertia. Generally, incrHial effects are important at very high frequencies.
In order to satisfy the requirements of linear superpaosition, it is imper-
ative that any linear polarization relation be time invariant; furthey, it
must also be a causal relationship [20, 21]. The lincar superposition re-
quirement is not satisfied if the relaxation lime in (5) is time dependent.
This can be yemedied if (0) is replaced by an integro-differential equa-
tion where the restoring and driving terms in (5) become convolutions.
The evolution equation developed in this paper has this form.

Dissaclo, Hill, and Jonscher argue that the power-law behavior ox-
plains most dielectric response in disordered solids and thal there is
minimal need to invoke a Debye relaxation or a distribution of re-
laxation times argument [13]. Dissado and Hill conclude that non-
exponential relaxation is related to cluster response [13]. [n their model,
wolectles within a correlated region react to the applied field with a
time delay, The crux of this approach is that in most condensed-matter
syslems the relaxation is due not to independently relaxing dipoles, but
rather that the relaxation of a single dipole depends on the state of other
dipoles in a cluster. This theory of disordered solids is based on charpe
hopping and dipolar iransitions within regions surrounding a defect
and between clusters [13]. The effect is to spread out the response over
time and therefore to produce non-exponential behavior. Dissado and
[1ill developed a representation of a corrclation function that includes
cluster interaction, According to this theory, the ime-domain responge
at short times is Gaussian. At still longer times are intra-cluster tran-
sitions with a power law of the form #C ). At still longer times there
are inter-cluster transitions with a Debye-type response, and [inally a
response of the form 0" D [22]. Van Turnhout and Roussy have
independently derived a distribution function that corresponds to the
Dissado-Hill model [23-25]. Tn these studies the distribution [unction of
relaxation times was found to be in the form of a beta function. There-
fore the Dissado-Hill model can be described also by a distribution of
relaxation times approach.

Dielectric relaxation, described by Kubo's lincar response theory, is
based en correlation functions and is an example of a relaxation the-
oty based on Liouville’s equation. The main difficulty with this ap-
preach, and for that matter, the theory developed in this paper, is that
the correlation functions are difficult to calculate and approximations
are usvally made in numerical calculations. The linear expansion of the
probability-density function in Kubo's theory also Jimits its uscfulness
for nonlincar problems,

Jonscher, Dissado, and Hill have developed theories of relaxation
based on fractal self-similarity [12, 26], Jonscher’s approach is based on
a screened-hopping model where response is modified due to many-
bady charge screening [27]. In the limit of weak screening the Debye
model is recovered.

Non-exponential response has been obtained using percolation mod-
els [18]. Non-exponential response also has been reproduced in com-
puter simulations using a correlation-function approach with coupled
rate equations for chains of dipoles [9,26,29]. Defect-diffusion mod-
els have been developed where relaxation is related to diffusion of a
defect in a solid lattice {30, 31]. In this theory it is assumed that a de-
fect enhances the relaxation rate by allowing dipoles to rotate. Skinner
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has related the defect diffusion model in polymers to soliton dynam-
ics [31], Tn this theory the defects travel in polymer chains as solitons.
Other models have been proposed that are based on more complicated
theories for the underlying transition probability [32-35] These mod-
els use age-dependent transition rates where a new variable describing
the age of a state is introduced to model defect diffusion processes. In
modlels based on correlation functions, as in this papet, the ensemble
averaging in the correlation function includes many of the effects of
waiting limes and microscopic transitions. [However, the correlation
functions are not, in general, easy to model.

2.2 CONSTITUTIVE RELATIONS
AND THEORETICAL
CONSTRAINTS

Constitutive refations between ficld quantities in Maxwell's equa-
tions must salisfy certain symmetries. The polarization and displace-
ment fields are even under time reversal, and odd under parity ransfor-
malions, whereas the induction and magnetic ficlds are odd under time
reversal and even under parity transformations. ¥leetric polavization
can be adequately modeled by classical mechanics, wheroas magnetic
processes require a quantum-mechanical analysis [36],

[n most malerials, the effecis of memory are impotlant for dielee
tric relaxation, Memory originates [rom many-body interactions which
tends to broaden the response of the system to the applicd field and
can yicld non-exponential relaxation. Llectremagnetic interaclions can
be lincar or nontinear functions of the clectric field strenglh, Tn linear
electrodynamic driving the pelarization is expressed as a convolulion
of the applied field with a correlation or pulse-response function.

There are many theorelical constraints on the form of the dielectric
susceptibility. The real and imaginary parts of the susceptibility for a
specific relaxation process must be related by the Kramers-Kronig con-
dition, Howevey, in a Kramers-Kronig transformation the de compo-
nent of the conduction current in the imaginary part of the susceptibil-
ity does not contribute {o the real part of the susceptibility [37, 38]. This
is because the de conduclion current is assumed to respond instanta-
neously to an applied filld as J ' ay 17; this yields a singularity in the
imaginary part of the susceptibility at w = 0. On the other hand, the
ac and some parts of the de conductivily can take time (o build up and
can influence both the real and imaginary parts of the susceptibility.

The permittivily is defined in terms of the microscopic polarization
- ¥ (£) where -y (1) is the microscopic

“w)

Gy -

pulsc-response function g{#) — -
correlation function
((-‘(wl < Coa) (26 () -| (”“E N
a(w)(e, - €w) {26, 4 €a) < o
: / g(m)e Ty
o
(+and the Fourier transform

)

where due to causality g(7) = Ofor7 <
F is defined as

o

Fla}w) - / g(r)e

a0

)
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and ¢, and ... are the static and optical limits of the permiltivity. The
dipole correlation function can be expressed in tevms of the dipole mo-
ment 7/i as

—{m(0)-
fy - 4O 1) ®
{m(0) - {0))
and is an approximation to - Y (4 (). In lincar-syslem response, for

a given response function, we can show that at high frequencies, 1’1("11
the optical limil, the teal part of the suswpllblhly must behave as 1/w?
and the imaginary part must tend to Oas 1 /e 7], This high-frequency
Lehavior is not realized in most phenomenological radio-frequency and
microwave permitlivity models. These high-frequency constraints on
the foss are important since the atienuation cocfficient scales as we'
where ¢ is the imaginary part of the permiltivily.  The inlegral of
the attenuation coefficient is convergent if the imaginary part of the
permitlivity gocs to zeto faster than 1/w? at high frequencics. This
preciudes the possibility of the Debye model extending into very high
frequencies, since this model has an asymptotic behavior for ¢ of the
form | fw. These high-frequency requirements assume only that the
impulse-response funclion is analytic and that frequencies are suffi-
ciently high that a Taylor's series expansion of (6) about £ — 0 is valid.
lenda has shown in a quanlum-mechanical analysis of decay, that at
short times the decay function must go o (Fat a rate slower than ex-
ponenlial [39]. It can be shown also that at large times the decay must
Le slower than exponential. Fonda also showed that the Paley-Wicner
condition probibits the correlation function from being a pure exponen-
tial at large times [39]. The Paley-Wiener condition is a constraint on
the Vourier transform of a function. [n this case the Fourier transtorn
is from the quantum-mechanical bounded energy spectrum to the time

domain.

In lincar driving, the response of the displacement 73 and polariza-
tion 7 fields o the applicd field 1 applied from ¢ —
a5

-ea {5 oxpressed

!

7,7).0", . (.“.i'z:(’i", -1 xo / gll--7) ﬁj(’f", Tydr

o

©)

P
where o = ¢ - e 15 the stalic susceptibility. For lincar response, in
the frequency domain, he displacement field is related to the incident
ficld by

D#,w) — (w) EFw) (10)
The effective permittivity is written as
cw) e | ox{w) o €{w) —id" (W) (i

where ¢y is the permittivity of free space and x is the frequency-
dependent susceptibility
xlw) = x(w) — ix"(w) (12)
The imaginary part of the permittivily also can contain the effects of de
conduction modeled by o /o,
Some rescarchers combine the higher-order moments in the defini-
tion of the displacement field

Desegli - P=V-0Q (13)
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where () containg higher multipole effects [6]. The double-headed ar-
row in this constitutive relation indicates that the relationship coutd be
local or nonlocal in time, that is, may contain memory. Others combine
the quadrupole and higher moment terms with the polarization vec-
tor [5]. It is important that the constitutive relation be independent of
reference position [40].

In actual dielectric measurements, in the {requency domain, a bulk
permittivity is obtained that includes both induced and permanent di-
poles and higher-moment polarization. In this analysis I assune the
polarization contains only dipolar interactions,

In a system consisting of an cnsemble of particles possessing per-
manent and induced eleciric moments, the local polarization g results
from both induced and permanent dipole moments and the movement
of free charge. We consider the dipole moment of the i-th particle in a
condensed-matter system. The permanent and induced dipole moment
can be written as

= it G Flougs) (14)
where #7i;/V = f;, V is volume, j4; is the permanent dipole moment
of the é-th particle, Eﬂm;(,,) is the local field at the particle, and cy; is the
polarizability tensor.

Pyroclectric materials have a net permanent dipole in the absence
of a field, however most materials do not have a net permanent me-
ment. In nonpyroelectric materials, where individual molecules have
permanent moments, on application of a field, fluctuations in the en-
semble average of the individual molecular moments produces a net
polarization,

In general, a multipole moment is unique only if all the lower mo-
ments vanish. In crder to maintain uniqueness of the dipole energy we
require the sum of the charge in the samyple to be 0. The dipole-moment
density 7, which yields the correct electric moment when integrated
over the sample, is defined as [2]

N
A = 3 rad(r = 7)
i=1
where ¢; is the charge at phase space position 7 with momentum 775,

(15)

We assume that ali moments can be written as (15). Modeling of in-
duced moments requires knowledge of the positions of all charge in the
molecules and volume, Modeling of permanent dipoles requires only
knowledge of the coordinates of the dipole in which case the integra-
tions in the expectations decouple.

3 EVOLUTION EQUATIONS
3.1 INTERNAL-ENERGY DENSITY

In our statistical-mechanical derivation we will need an expression
for the Hamiltonian. In this Section we review the componenis of the
potential energy of a system of identical particles in an electric field.

The total internal encrgy is a sum of kinetic and potential cnergies.
It order to study and review the various contributions of the potential
encrgy we consider a collection of both permanent and induced po-
larizations and follow Mandel and Mazur to perform an electrostatic
analysis [19, 41].
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Figure 1. Dipole moment calculation.

The local electric field of particle ¢ in the diclectric in an applied field
F, after correcting for depolarization is

J
The dipole-dipole interaction tensot is
TP G At ) (17)
el G s |

where 7 is the {dentity matrix. By iteration of (14) and (16) the dipole
moment of the ¢-th particle, which includes interactions, is obtained
Ty = ji — ()iz ’f“ gyt o Z Tij'fjk T
J i, kLd

-~
permanent monent

+ |ex 7 R Z ’I’” +a? Z ,’f;jf?ﬁ; —
¥) i,k

I (18)

—

induced moment

The internal potential energy ¥ contains the individual potential en-
ergies of the lattice constituents, which includes Coulomb binding and
London-van der Waals encrgies, is denoted by 1. The dipole-dipole in-
teraction energy is separated out from the coulomb forces and denoted
by 2igip. The induced contribution i3 24, and the internal energy due to
field interaction with permanent dipoles is w, [41]. Both wy, and np
are strongly dependent on the external ficld, whereas 1gip indirectly
depends on the external field due to internal fields from dipeles. Thus,

V= up + tgip -l tin + v

= S o= - (19)
= g + %ﬁ' T -’T?L[) = %E AE— ’i’?).g_) -
where _ B o
tho = [T +a | il =f— A4 (20)
Ugip + Wi — S T oo by A B (21)

[n these equations 7' and 7% do not have subscripts, since we have
combined all particles under a single variable to represent the 3 N di-
mensional system. The effective polarizability tensor, which includes
intermolecular interactions, is defined as

A= alf to 7:] 1 (22)
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W sce thal the electronic energy consists of field independent terms
plus terms that depend on the electric ficld.

The total dipole moment is & sum of a permanent moment and an
induced component. The total static dipole-moment density including
permanent moments can be written as

Lo
7= v ol A I*] (23)
and thercfore the potential energy is
Uy -+ Hlip -
= - AU N (24)

v
3.2 THE HAMILTONIAN

We now use the results from the previous subsection to develop the
Hamiltonian. Consider a polatizable malerial immersed in an exter-
nal clectric ficld. The ficld .E’(f", ) is turned on at £ — 0, interacts
with dipoles, and thereby drives the relaxation process. If quadrupoles
and higher multipoles were included then clectric field gradients also
would be present in the Hamiltonian. We assume that the wavelength
of the field is much longer than the particle dimensions, In a finite time
after field application, relaxation oceurs in the material which modifies
the field interacting with the molecules. Constitutive relations exist be-
tween nef polarization and the applied field, In this classical analysis |
timit the frequency to [ < &7/ 12n (eg. [ < 100 GHz), The corre-
sponding relaxation time is 72 A /&7, o1 2 1 ps. Using the expression
for the kinelic energy density,

'/T"r. ) 'ﬁJi

v =y S(F — 1%
/ 27/ 2M; ( )
the [Hamiltonian, in volume V', which includes dipolar interaction {15),
can be writlen as

H(E) =

(25)

/ B UG L) — 1) - B 1)
~ B/ ;
dipolar-energy

v i)

lattico-onergy

— Z ?L[)(-,j)('f"z) - Z: “*ff‘i}’(‘fj)(
: i3

N

where 1" denoles phabegspam vnnablcs. M is the latlice part of the
potential energy, excluding the clectric field interaction with the di-
pole moment, and contains charge interactions, dipole-dipole interac-
tions, van der Waals energy, and the kinctic energy of the lattice. The
dipole-dipole interaction depends on the external eleetric field indi-
rectly through the dipole moment. In classical mechanics the dynamical
state is specified by the phase coordinates 7 and momenta #; for each
degree of freedom at a particular time. 7 given in (15) contains the
effects of both the permanent and induced dipole moments.

3.3 POLARIZATION EVOLUTION
EQUATION

(26)

The goal in this section is to derive cvolution equations using a pre-
viously developed formalism [1] {see Section 7.3), Using expected val-
ues of the polarization and infernal energy as constraints, a canonical-
density function o (¢) will be developed.
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The locai dipole-moment density j7{+) and internal energy density

i () do notexphatly dcpend on time, but it enters through the implicit
dependence in 7 and ¢ The time dependence is oblained when the
expectation of these quantities is taken. The time evolution will be
obtained from the Liouville equation. The constraints on the average
polarization and internal energy density al time ¢ atc

P, 1)*"1’ W, Ve (T 6)) = (7 (27)
U@ ) = T U F Do (1, 8)) = (U, (28)

The definition of the trace is
() / R / Odr 09)

The trace 7, is defined in classical mechanics as integration over phase

variables and quantum mechanically as a trace of the operators. The

canonical density function, at a single instanl in ime, for dielectric re-

sponse, can be constructed by maximizing the information entropy
Sy = Kb (ot na(h))

subject to constraints (27) and (28) which yiclds |1]

(30)

(1) — oxp (= [ r{BUT) BT sz(al)
T 7
(31}
where _
7 =", ((:}q) [--/(z-‘%-{ﬂu(f',lﬁ) BEE T - (i, ,)}D
o (32)

and the Lagrangian multiplier /3 s expressed in terms of temperature
A1) = VED(FD, k is Boltzman's constant and — 3 £ is an-
other Lagrangian multiplicr. The Lagrangian muliipliers are thermody-
namic conjugates of U (7, £} and (7, £) and are functions of #*and t,
H 1> can be interpreted as an offective local field, in conlrast 74 which
is the external field (sce Tigure 2).

|
Y e Uy
I S R S O S R L
I . K
d D
Specimen
—————————— B T TSI e 1
R e s e B T T D e O s s L Sy S S i O 2

Figure 2. Elechic fields in a capacitor that contains a polarizable ma-
terial. The field without material is I;f, the depolarizing ficld is I, and
local electric field is 75,. The free and bound surface-charge densities are
oy and oy,

The fields 7# and ﬁ.l, in Figure 2 differ duc to redistribution of charge
in the presence of the applied field causing a depolarization field that
tends Lo decrease the net clectric ficld in the material,

The full statistical-density (unction p that satisfies Liouville's cqua-
tion (Section 7.3, Lquation (97) ) can be expressed in terms of the canon-
ical density function as given in Section 7.3 Equation (104) and repro-
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duced here
¢

A8 = e (D)8 — /(,ETT('I;,T, ML, r)a(T, )  (33)
i
wherce 7 is an evolution operator and £ is Liouville's operator (see Sec-
tion 7.3 for a review of the projection-operator formalism). The explicit
projection operator dependence has vanished in (33) since

Py ="1n(GLp)y = 0 = ) 34
as shown in Section 7.2 using the definition of the projection operator.
The dot is defined in Section 7.3. The projection operator still influ-

ences 7 in spite of {34). The relation (p} = ( would hold cven if the
quadrapole and higher-order moments were included in the definition
of . The projection operator promotes convergence of the kernel at
long times.

In magnetlcs a reversible term arises due to the noncommutivity of
the spin components. Spin precession obeys a torque equation. No
analogous dynamical evolution is followed in dielectric relaxation.

If we apply (106) and (95) from Section 7.3 we tind

aP_T’_L /d“ ’/ [0, GIF BT L, r)x
(T;'(T',T),g(r,ﬂ]) ABG,7) — ol )b ()
and the internal energy density evolution is given by
I (7,1) B a*P’(f: £)
Nl UL Ry /A 36
o ( at (36)

Actual calculation using (35) and (36) is difficult. We will make sim-
plifications in the next Sections. The memory kernel is defined as

K= T ([0.0), G T4, 7) [0, 7)1, 1))
(37)

Here, I have indicated the impiicit time dependence in 'and &, 1 use
the symbols [] for classical-mechanical Poisson brackets and [ have used
(34). Equations (35) and (36) are very gencral and are valid for non-
equilibrium states. An interesting feature of (35) is that the time rate
of change of the average polarization is proportional to the difference
between the external and effective local fields. Kquations (27), (28), (35),
and (36) are to be solved together for 7, U, A3, and —[Hi:p‘ Fquation
(36) is an equation for consetvation of cnergy.

We can also calculate the non-equilibtium entropy from (30)

St =k () Ino(t)

/ddh[u’(q )~ P B(F, )] kg

The entropy rate is

dS(t) da (1)
m AT( il lna(t))

N {39)
= ./rl"ifr'-% {apgl}t) : (E( 1) — "'p( ))}

Since T'dS/ dt is the power absorbed by the media, the entropy pro-
duction can be studied experimentally by (39) using (35) in the time or
frequency domains.

(38)
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The microscopic current density .J{7), calculated in Section 7.1, is
N

J() — Z Ji = [p(#), 6

(40)
*L{ (T — ) VA )
—————
dipole cucrent
charge current
where A, is mass, and the momenium of particle ¢ is
Z 7545 (1)

F=1
where ¢ are unit vectors. This current densily is duc to the interaction
of particle momenta with the polarization.
The Poisson brackets in (35) and {36) can be simplified

(), 0] = Zﬁ(ﬁ,i)-f;(f-)«r (42)

and )
[p(r). U] = [p(r), ] = J {43)
We can also express (35) in terms of reduced correlations using (40),
(42), (43)

ap (7. t) /Z[flf Pl ) ( 7Ty — Dr(?’i’mr))

— fzj {F 6, 7): {Vﬁ(’ijﬁ) — Vﬁfa(v"]-,T))J dr

(44)
where the sum is over all particles, and the reduced correlation fune-
tons are

A AT, 7
Sy 7)) =— Arx
N

T, (.7,;@;;, T (U, 7)7 (o (L, -T)) (45)

i1

foj (Ft,7) = H(T;Wj )qj
AT
SO (T T i () @6)
il
The § == 4 term in (45) is interpreted as the single-particle or intra-
cluster cortclation and the § % ¢ terms correspond to the interparticle
or intercluster correlations. The second term in {44) is the interaction
with the gradient of the electric field.

3.4 LINEAR APPROXIMATION

In ovder to use (35) and (36) we need to obtain the Lagrangian mul-
tiplier for the effective local field Fp (1), The goal of this section is
to obtain an approximation for i<,

In a lincar approximation to (27) we use a zero-order equilibrium
canonical-density function

exp {—Fup)

fr(oxp (- ,Hﬂg)) @7

0'0:
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[fwe expand (27), assume gy, and 37 I are small relative to &7,
and keep only terms lincar in Fip, we find
Pl t) = VB — 20 (ppeay ot -
Bp(,t) =Xo {1 -~ N} - ]4’( £)

where the zero-ordet static susceptibility is Xof* AY .

(48)

I have assumed the material is nonpyroelectric, so there is no net
polarization in the absence of a field and

N = 28{(pe} !
—-1
—= 2‘/{7)2 ;Y(;

PP o
(D) "

(]’-Jf"’i?"dipﬁl
Assuming \T is small, since 7145, SR <
obtain the effective local field

< 1, we may expand (48) to

ip P #) s 7—}-1:\} X, Pt
PO (N Yo P -
=X, PO L)
where the depolmuailon l(‘l]b()l is defined as
-1 — -1
] VH X[) <f)p?1d1p>(l \() o J?\IA/I) (51)

Equation (51) is an expression for the depolarization tensor in terms
of the dipole-dipole interaction potential encrgy.

Depolarization has its origin in the potential field created by the po-
larizod bound and free charge which creates an opposing clectric field,
The local ficld is a linear combinalion of the external field plus the neg-
ative gradient of the polential caused by the free and bound charge. We
can see this using a derivation given by de Groot [5] for a general local
ficld 7%, in terms of a polarization field 7, a potential due to polarized
charge ¢, and an external electric field 7l

= —~ 1 VPO
E[} = Iy B Vo— / - ]”(%) dr’
e, o

(52)
VvV — — [_’(1, £

dref -

Vv

-

Here we have identified the depolarization tensor T, which is the neg-
ative of the volume inlegral of the dipole-dipole inleraction tensor be-
tween dipoles located al 7 and #.

4 RELAXATION

AN APPROXIMATION TO THE
POLARIZATION EQUATION

4.1

The goal of this Section is o examine the evolution Equations (35)
and (36) and to study the susceplibility using (35}, {36), (50), (31), (42),
and (43).
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Suppressing spalial dependence, we have the generalized evolution
equalions

(”;E!) 1V /{Hl’ T).f(T)(T(T)]X
[(-lr ] '/\[)) ’\() (ﬁ( 3! Xo (n' Ex\n) 'x
Hrdr =0 (53)
and
) V/{! - (Fyr (S im)e(n) x
(7 ,m\() Yo (P(r)
~Xo (T - 1 Xo) " E() T 0 (54

Due Lo the approximation on the local field, (53} and (54) are not
exact, but the approximations made are nol severe. Equation (53) has

the form of a generalized Debye equation. The kernel /., is a current-
current correlation function. In a lincar approximation the kernel in (53)
depends only on i - 7. It can be shown to be real and an even function
of time [42, 43] {although in many phenomenological theories the cor-
relation funetion is not even in time). Harp and Berne [43] and Bliot
and Congtant [19, 44} have studied memory functions in molecular-
dynamical calculations in the forms of delta function, expenential, and
Gaussian.

4.2 THE POLARIZATION CURRENT
AND SUSCEPTIBILITY

4,21 SUSCEPTIBILITY
In this Section I study the kernel ];, and look at special cases of

relaxation behavior, The susceptibility X due to an external field £ ( )
is defined by

FAPHw) =X (w) - E(w) (55)

The susceptibility of (33) is
X [w] LI K )] !
F{K @) Xo (1 — LX) * (6)
The Fourier transformed memory function medels the frequency de-
pendence of relaxation in a malerial and is in some respects more funda-
mental than the susceptibility. The memory function has been studied
previously using Zwanzig's projection operator formalism [43]. Materi-
als with a single relaxation time arc adequately described by the Debye
model, which has a lourier transform of the memory function that is
(requency independent. More complex materials require a frequency-
dependent relaxation time. In fact a single, constant relaxation time is
not consistent with the required high-frequency behavior of dielectrics
since the imaginary part of the susceptibility must decrease faster than
1 /w?. This behavior can be obtained if the relaxalion time is frequency
dependent.
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Assuming a scalar kernel which is a function enly of t- 7, neglecting
spatial dependence and depolarization in (53), we obtain
« FK,
¥w) = xo— T e )
+ FIKHw)

( ) 4 7% (w) — wrlw)
= Xo— 57
Xo 12 (w) 1 [u)*!(t,u)]z (57)

whiw)

h2(w) + [ Sr{w)]?

Thave defined F{ K, }w) ~ h{w) -ir{w). Assuming the suscep-
tibility is analytic in the frequency region nf interest, causality requires
the pales of y to reside in the upper half planc. The susceptibility, sub-
ject to the approximation (50), must be of this form in (57) [46],

X0

If we define a memory response function diC(8)/di = K.(2),

PRy ) = T €

we see that FEHO)
Sl -
x(w) = xo W{m) (59)

Equivalently, the Fourier transform of the memory response function
can be written in terms of the susceptibility,
PR x{w)/xo
FIKHw) = - — 57—
o) L xiw)/xo
Assuming the susceptibility satisfies (59), taking the inverse Laplace
transform we obtain

(60)

l

() = 18y + — / K- AlHdr @)
0 X0 J
By iteration of {61) wc have
3
1 :
Kt)=— It 47-7/1'1771 (AN R 62
() " {t) oy O (62)

Also the susceptibility satisfies (57) and taking the inverse Laplace
transform we obtain
I3

- / Ko (b ) (r)dr + xol (i)

i (63)

0
where 7 is the inverse transform of the susceptibility. By iteration

K.(6) = yo |41 d-/](;’; A

—= 64
dt Xb dt (’ )
0

This equation can be used to obtain the responsc function in terms of the

memary function K, [45]. When xod® (#)di — I(t} and {0) —
1

/ Ko {t —7)®(r)dr
0
In Sections 4.2.2 to 4.2.5 we will discuss special cases of relaxation,

A
g (65)
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4.2.2 DEBYE RELAXATION

T'he relaxation kernel can be approximated in a number of ways. In
the simplest case of a Markov process with a single relaxation time 7.,
the kernel is a delta function at £ = 0, K. (£) = 6(t) I /7, Usinga
simplistic approximation for the Lagrangian multiplier /4> = P/xo
and neglecting depolarization, we obtain Debye’s equation for the delta
function response equation

dr + {_rp,ﬂi’ } (] (56)
dt Te.

The response function in this case can be calculated from (63) to be

I([) XD()([) (‘)\D( IL/T()i ((]7)
Te

The memory function in this case can be derived exactly using the
first two terms from (64), using (67), where ©(¢) is the unit step func-
tion. The Fourier transform of (66] yields

Xo
3
xlw) = 1+ iwr, (65)
In this approximalion the Fourier tnn<.f01med memory function is
FEHw) — (69)

We alse note by analogy to (66) that the RH@ of (35) relates to damp-
ing. We see that an extremely simple memaory funclion leads to Debyce
refaxation which has constant memory,
4.2.3 EXPONENTIAL MEMORY
FUNCTION
In this case
K. = At )(}‘p( M/? ) (700

The Fourier transform yields

A

FIK Y = —p
e Te (1 + iwre)
The response function can be caleulated for this case to be a damped

sinusoid

n

ool — gt sin(52)

- AS{L)- 72
1) = An) =2 ")

The susceptibility with A -= Lis
xw) = a 73

L lwr, (L] twT)
Note that this expenential memory function yiclds combined inertial
and Debye relaxation. In this case the memory decreases as [requency
increases.
424 GAUSSIAN MEMORY FUNCTION

In this case

L&
K. — (!)(‘Xp(f?{?) (74)
The Fourier transform is -
. Aw AN (Tew
F{E N w) = o, oxXp (ﬁ- 4—) [l . |(,1I( 5 )] (75)
The susceptibility is
M) = e M —— — (78)

] |-Iu)/(A\/7r(‘Xp( )[[7I(‘1[[LZ 1)
where erf is the error function of 1magma1y argument,
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4.2.5 POWER-LAW RELAXATION AND
MEMORY FUNCTION

In the previous special cases the memory function was a simpic frme-
tion. In order to model dielectric data over large frequency bands, when
there are a number of relaxation mechanisms involved, more compre-
hensive models are needed. As a last application we consider a dielec-
tric represented by a lumped-circuit model and show how it reduces
to the Dissado-Hill model. Using the Dissado-tEll approximation for
the correlation funclion, we will develop an expression for the memory
function. In this case, the expression for the Fourier transform of the
memory function is not simple.

R circuits have been used extensively to model diclectric response
[26,38,47,48]. The susceptibility in (57) takes the form of a general-
ized RO transfer function for a transmission line. In a simple lumped-
circuit model the system function can be ideniified as

S S
S — (G Tiw (R w )

i {77}
U amren
where (7, GGy, L, and I are lumped-circuit parameters,
This model is an overly simplistic representation of most diclectrics,
The model can be generalized by assuming a fractal-like power-law
dependence of the lumped-circuit elements.

First we note that the time-averaged inverse Fourier transform of
the power-law generalization of the transfer term in (77) yields an ex-
pression for the time-response function in the same form as given in
Dissado and Hill [49]

 oxpliwt)dw o
HOES ()(i / S wC) (1w )T
- )
] f( n](‘l " ”]_—ITO( )(\XI) //Tl)l' “ry
ML —1m, 2 — ny ]
where 7 = Ci /Gy, 1o — L/R,wy, = L/7y - 1/, Mis the conflu-
/

ent hypergeometric function, and A is a constant. In the Dissado-Hill
theory, 1 /3 == 18/ 1 — 0. 1f it and L areincluded then the model is a
generalization of the Dissado-Hill approach and can include magnetic
cffects. We also have when /.//t — 0 the response autocorrelation
function

AT {1 =
f( ) () f)fl g
o1 [(1 Fmmy o), (2-- {79)
At small times (78) has a limiting form of £~ " where 0 < n < I,
At longer times, the limiting form is £ 1 where 0 < m < 1. [will
now comment on the relationship between (78) and the Dissado-TIill
result,
If we multiply both sides of (78) by ¢ and take the Fouricr transform
of L1(t) we have
1 [
ey A
i dw ), deme g 1-am
_ I
+ iw)l-\-m. n(% P IW)I -~

M, 2 — n), —wpt]

(80)

(&
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and therefore by integration we obtain the susceptibility
X(W) iy - i 1 -n,Lm-—|><
w
' (81)

dx

0
[t is interesting to nole thal in this case the susceptibility al w de-
pends on the integral over w of the fractional-power cireuit function,
Once the integral in (81) is evaluated, we see this equation is equiva-
lent to the frequency-domain function given by Dissado and Hill [49]
as /L —
Y

x(w) -
i
oL =, L= 2 [ i(w/wy)] 1)
o (-, L-om, 2 -, 1)
At low [requencies y(w) in (82) behaves as w, and at high frequen-
cics, as w1,

xo[t4i=
149
(82)

| [ ReoH) /
—5¢— Im{LH)
4|
—%— Dobyo
[ |--(3— No{sxp) /’i‘/
3 | —l Imiuxp)

T((n)

T, ‘

Figure 3. 7(w} for Debye relaxation, 1issade-T1ill theory with m - -
0.8, — 0.2, exponential (exp), and Gaussion (Gauss).

2% — . .. R

— Pe(Dh)

- 3 - ImiDH)

- %7 - Dobye and Refoxp)
——t— Imiexp}
—A~ Ro{Gauss)
—O— Im{Gawss)

20 |-

wr(m) 10 |-

25 3

e,

Figure 4. The nondimensional variable wr(w) for Debye relaxation,
Dissado-Hill theoty with v -~ 0.8, » - 0.2, exponential {exp), and
Gaussian {Gauss).

5 THE MEMORY FUNCTION AND
FREQUENCY DEPENDENCE
OF RELAXATION TIMES

We now study the Fourier transform of the memory functien for the
The relationship of F{ K. }(w) to x ean be evaluated

x{w)
“ o — x{w)

various cases.

from (57),

}_{ K(‘}(w) - (83)
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For the Dissado-Hill function the Foutier transform of the memory
function is

FLCHw) — iwx

A (LT 2 (G /w)] 1)
I (e Lom2—n 1)

1o 1 ”777 oIy (L om, - rpi.,27—u,['lf{—i(m/.’u,,)]' 1)7
[l ) lw/mP] DI {(1—n 1,2 n, L)
We can obtain additional insight into the behavior of the memory

function if we define the complex refaxation time 7{w} as
1

(84)

et ] it =T 5
Fi - 7y{w) | im{w) =7{w) (85)
The susceptibility in this case is
B L wri{w)
) = X0 T T wnli)? 5
Wy (1)

—_ i g - T o .
)u)u)z’rt,?(w) A (1 = wr{w))?

In a Debye relaxation, the relaxation time is 7. which is independent
of frequency, as indicated in (69) and is shown in Figures (3) and (4); we
also plot the relaxalion times for exponential, Gaussian, and Dissade-
Hill functions. Note that the Dissado-Hill function has both real and
imaginary parts and has unique and significant frequency dependence.
This is due to limiting behavioss of the correlation function in (1) and
{2).

6 CONCLUSIONS

N this paper a statistical-mechanical theery for polarization evolu-
Iti(m for a system of particles was derived using a projection-operator
approach. New generalized equations of motion, nonlocal in space and
lime, have been derived for the polarization and internal energy, which
includes effects of memory and non-equilibrium.

The internal energy was studied and decomposed into lattice poten-
fial energy, kinelic energy, and energy due to permanent and induced
dipole moments. The main difficulty with the present approach is the
estimation of the memory function,

A lingar approximation to the polarization was developed which
involves the depolarization tensor. The resulting equation of motion
in a linear approximation was time-invariant and causal. The cffec-
tive lacal ficld was developed in terms of the relaxation kernel, The
linear-response function was related to the kernel and then the Fourier
transform of the kernel was related to the Pourler transformed mem-
ory function. 1t was shown that the susceptibility must be a specific
function of the Fourier transtorm of the memory function. The Fout-
icr transformed memory function and frequency-dependent relaxation
time were developed for special cases and related to the susceptibility.

When studying physical mechanisms of relaxation, in many respects,
the Fourier transform of the memory function appears to be more fun-
damental than the susceptibility. Very simple forms of the memory
function yield classical dielectric behavior. We found that when the
memary kernel can be written in terms of a delta function in time, we
recover the Debye equation. In the case of an exponential memory
function we obtain a Debye-like susceptibility that incorporates iner-
tial cffects. In another application, where we have a power-law circuit
transfer function, we obtain the same susceptibility as Dissado and [1il}

Balker-Jarvis: A Generalized Dielectric Polarization Evolution Equation

|49] and develop an equation for the Fourter transform of the memery
function. Tt was found that for the Dissado-Hill model the susceptibil-
ity is given by an integral over frequency of the transfer function. The
memory (unction in this case is much more complicated as a result of
this model incorporating a number of relaxation mechanisms,
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7 APPENDIX
7.1 KINETIC ENERGY OF THE
LATTICE

The Poisson brackets for position and momentum salisty

[, 73] = [e ] = O (87)
[wisr] = dap — —[rismy] (88)
The kinetic encrgy is
N3 2
= 2 8
2 721 20 )
1t we usc (15) for the dipole-moment density
pli) = Fad (7 - 7) (90)
i
Using Poisson brackets
[P h] = 2mad e (o)
Therefore the current density is
A (i) = [i1F), 6]
gy I
Z[ﬁiqm(ﬁ NI S v7 A B )

i—1

charge current dipole current

Also, since the potential energy of the lattice is a function only of ;

V= 0 @)
7.2 REVERSIBLE TERM
Singe )
[M- 73'-11",],(TJ 0 (94)
therefore
U0 = [p- Elp, 0] (95)
and ,

[ Byal) = (olp g (Bp - 1)) =0
Similatly, we can show that {{4) — 0.
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7.3 NON-EQUILIBRIUM
PROBABILITY-DENSITY
FUNCTION

In this section the projection-operater lools needed lor studying re-
laxation processes treated in this paper are overviewed (sec Robertson
[50]). We suppress any spatial dependence and use a classical analysis.

The evelution of the statistical density function produced by the dy-
namics is given both classically and quantum mechanicalty by

) irete) o] — iyt

Here £ is cither the classical or quantum-mechanical Viouville oper-
ator.

{97)

We assume the set {#5(+)} of classical functions in phase space
have expectations that are abservable. The expectations are defined by
(IMy - TL(47p(t)). We define a generalized canonicat density o (£)
that describes the non-equilibrium thermodynamic variables of the sys-
lem, Tollowing [1,50], the generalized canonical probability densily
fumction (1} at time ¢ satisfies

L) — (5 (0), (98)

Tn this approach o (1) is that part of the non-equilibrium statistical
density p(t) which is obtained from information at a single instant of
fime.

Ihe canonical-density function is developed by use of constraint con-
ditions (98) and by maximizing the information entropy to obtain

a(t) = cxp (=A% £) (99)
The + operator is defined as
N
Ak 1= 3N, (100)
n—10

"The Lagrangian multiplicrs A, (¢) are found by substitution of the
calculated expectation values into the constraint conditions (98). Nor-
malization is obtained by setting I =- 1.

Tt is necessary to introduce a projection-like operator £7(4) that satis-
fies 172 . 17 [42). The operator 1 is lincar, non-Hermilian, and is used
[on separating relevant or observable details from irrelevant details. Tt
salisfies both

de . dp
— == Py
o Wy, (te1)
and
oll) = P{E)p(t) (102)
and it is defined for operations on a function A by
(S(I(i,)
POA - —ZL 1. (I'A
(t) Y A1) (103)

= B (1, Ve {(10AY,
where & denotes functional differentiation. The subscript ; indicates
that the expectation uses = (t). The operator 12, a generalization of
Zwanzig's lime independent projeclion operator [42], separates out the
relevant from the irrelevant part. The time correlation functions of the
commonly used Kirkwood, Green, and Kubo expression for transport
coefficients do not contain the projection operator and therefore do not
have the coreect behavior at long times. The projection operator also
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contributes to the time dependence of 1°(1, 7). £2(1) may be expected
to correct for the divergence of transport coefficients.
It is possible to show that with the condition, p(0) = o{0} [31]

!
ot — olt) - /riT’T(J’.,T){_.I PENLe() (104
0
The integrating factor 7" (%, 7} satisfies the initial value problem
I7 (1, .
Ty eieic (105)

C
with initial condition (£, £) == 1. All of the operators 7, P2, and £
are lincar.

Using this formalism an equation of motion can be wrilten

a(l"m)l. ) :,
. af, = (1’ m}[
L (106)
- / ([ 10T PY[H, o)) dr

Here the dot is defined by Jr— i£1. The first term on the ri ght side of
(106) is the reversible or conveclion term; the second is the relaxation
term. Equation (106) is exact. This technique has been used for other
applications [52].
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